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Abstract: We consider, in de Sitter spacetime, both freely falling and static two-level

atoms in interaction with a conformally coupled massless scalar field in the de Sitter-

invariant vacuum, and separately calculate the contributions of vacuum fluctuations and

radiation reaction to the atom’s spontaneous excitation rate. We find that spontaneous

excitations occur even for the freely falling atom as if there is a thermal bath of radiation

at the Gibbons-Hawking temperature and we thus recover, in a different physical context,

the results of Gibbons and Hawking that reveals the thermal nature of de Sitter spacetime.

Similarly, for the case of the static atom, our results show that the atom also perceives

a thermal bath which now arises as a result of the intrinsic thermal nature of de Sitter

spacetime and the Unruh effect associated with the inherent acceleration of the atom.
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1. Introduction

Spontaneous emission is one of the most interesting problems in the interaction of atoms

with quantum fields and so far mechanisms such as vacuum fluctuations [1, 2], radiation

reaction [3], or a combination of them [4] have been put forward to explain why sponta-

neous emission occurs. The controversy arises because of the freedom in choices of ordering

of commuting operators of atom and field in a Heisenberg picture approach to the problem

and was resolved when Dalibard, Dupont-Roc and CohenTannoudji(DDC) argued in Ref.[5]

and Ref.[6] that there exists a symmetric operator ordering that renders the distinct con-

tributions of vacuum fluctuations and radiation reaction to the rate of change of an atomic

observable separately Hermitian. If one demands such an ordering, each contribution can

possess an independent physical meaning. The DDC formalism resolves the problem of

stability for ground-state atoms when only radiation reaction is considered and the prob-

lem of “spontaneous absorption” of atoms in vacuum when only vacuum fluctuations are

taken into account. Using this formalism one can show that for ground-state atoms, the

contributions of vacuum fluctuations and radiation reaction to the rate of change of the

mean excitation energy cancel exactly and this cancellation forbids any transitions from

the ground state and thus ensures atom’s stability. While for any initial excited state, the

rate of change of atomic energy acquires equal contributions from vacuum fluctuations and

from radiation reaction.

Recently, there has been a great deal of interest in the application of the DDC for-

malism to accelerated atoms and those in the background of a black hole [7 – 13]. These

studies reveal intriguing relationships between spontaneous excitation of an atom and the

Unruh effect as well as the Hawking radiation. In a flat spacetime, the spontaneous ex-

citation of a uniformly accelerated atom in interaction with vacuum scalar [7, 8, 11] and

electromagnetic fields [9, 10] has been studied. It is found that for a ground state atom in

uniformly accelerated motion through the Minkowski vacuum, there is no longer perfect

– 1 –



J
H
E
P
0
2
(
2
0
0
8
)
0
3
3

balance between vacuum fluctuations and radiation reaction. As a result, the spontaneous

excitation rate of the atom is nonzero and furthermore the rate is exactly what one would

obtain assuming the existence of a thermal bath at the Unruh temperature. Inspired by an

equivalence principle-type argument, the spontaneous excitation rate of atoms in interac-

tion with a massless scalar field in an interesting kind of curved spacetimes, i.e., the curved

background of a black hole, has recently been studied [12, 13], in both the Hartle-Hawking

vacuum and Unruh vacuum. The results obtained may be considered as providing a dif-

ferent approach to derivation of the Hawking effect, since they show that a static atom in

the exterior of a black hole would spontaneously excite as if immersed in a thermal bath

of Hawking radiation.

As natural step forward, we are interested, in the present paper, in the spontaneous

excitation of atoms in yet another kind of special curved spacetime–de Sitter spacetime.

De Sitter spacetime, being maximally symmetric, enjoys an important status among the

curved spacetimes similar to that of Minkowski spacetime, and more importantly, it has

attracted a surge of renewed interest in recent years for the following reason: First, recent

observations, together with the theory of inflation, suggest that our universe may approach

de Sitter geometries in both the far past and the far future, and second, there may exist a

holographic duality between quantum gravity on de Sitter spacetime and a conformal field

theory living on the boundary identified with the timelike infinity of de Sitter spacetime [14].

Therefore, it is certainly of interest to examine the spontaneous excitation of atoms in this

spacetime and this is what we plan to do in the present paper. Using the DDC formalism,

we will calculate the spontaneous excitation rate of both a freely falling atom and a static

one with an inherent acceleration in interaction with vacuum fluctuations of quantized

massless conformally coupled scalar fields in de Sitter spacetime. Let us note that the

quantization of scalar fields in this spacetime has been extensively studied in the literature

[15 – 24].

When vacuum fluctuations are concerned in a curved spacetime, one first has to specify

the vacuum states. The vacuum states in de Sitter spacetime can be classified into two

categories: one is the de Sitter-invariant states, the other states are those which break de

Sitter invariance [21]. Generally, the de Sitter-invariant vacuum, whose status in de Sitter

space is just like Minkowski vacuum in the flat space, is deemed to be a natural vacuum. So,

we will investigate the spontaneous excitation of atoms in interaction with a conformally

coupled massless scalar field in the de Sitter-invariant vacuum. We will show that for an

atom moving on a timelike geodesic (freely falling), the spontaneous excitation rate is what

one would expect if the atom were in a thermal bath of radiation at the Gibbons-Hawking

temperature [25]. While for a static atom in the de Sitter-invariant vacuum, we find that it

also may spontaneously excite as if immersed in a thermal bath at a temperature equal to

the square root of the sum of the squared Gibbons-Hawking temperature and the squared

Unruh temperature associated with the inherent acceleration of the atom.

It is worth pointing out that the difference between analyzing the spontaneous excita-

tion of atoms using the DDC formalism as we do in the current paper and similar previous

calculations of the response of model detectors in de Sitter spacetime [15, 25] lies in that

our discussions provide a physically appealing interpretation of the thermal response of the
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detector, i.e., a transparent illustration for why the detector clicks, since the spontaneous

excitation of the atoms can be considered as the actual physical process that is actually

taking place inside a model detector revealing the thermal nature of de Sitter spacetime.

2. The general formalism

We consider a pointlike two-level atom in interaction with a conformally coupled massless

scalar field in de Sitter spacetime and assume that the atom has a stationary trajectory

x(τ), where τ denotes the proper time on the trajectory. This stationary trajectory guar-

antees that the atom has stationary states, |−〉 and |+〉, with energy −1
2ω0 and 1

2ω0. The

atom’s Hamiltonian with respect to its proper time τ can be written as [26]

HA(τ) = ω0R3(τ) , (2.1)

where R3(0) = 1
2 |+〉〈+| − 1

2 |−〉〈−|. The free Hamiltonian of the quantum scalar field is

HF (τ) =

∫

d3k ω~k
a†~k

a~k

dt

dτ
, (2.2)

where a†~k
and a~k denote the creation and annihilation operators with momentum ~k. The

Hamiltonian that describes the interaction between the atom and the quantum field is

given by [7]

HI(τ) = µR2(τ)φ(x(τ)) . (2.3)

Here µ is a coupling constant which we assume to be small, R2(0) = 1
2 i[R−(0) − R+(0)],

where R+(0) = |+〉〈−| and R−(0) = |−〉〈+|. φ(x) is the scalar field operator in de Sitter

spacetime and it satisfies the wave equation

(∇µ∇µ + m2 + ξR)φ = 0 , (2.4)

where m is the mass of the scalar field, ξ is a coupling constant and R is the scalar curvature.

The coupling is effective only on the trajectory of the atom.

Then we can write down the Heisenberg equations of motion for the dynamical variables

of the atom and field from the Hamiltonian H = HA + HF + HI . The solutions of the

equations of motion can be split into the two parts: a free part, which is present even in the

absence of the coupling, and a source part, which is caused by the interaction of the atom

and field. We assume that the initial state of the field is the de Sitter-invariant vacuum

(also known as Euclidean or Bunch-Davies vacuum [16]) |0〉, and the atom is prepared

in the state |a〉, which may be |+〉 or |−〉. Choosing a symmetric ordering between the

atom and field variables, we can separate the two contributions of vacuum fluctuations and

radiation reaction to the rate of change of 〈HA〉 ( cf. Refs. [7, 5, 6] ),
〈

dHA(τ)

dτ

〉

V F

= 2iµ2

∫ τ

τ0

dτ ′CF (x, x′)
d

dτ
χA(τ, τ ′) , (2.5)

〈

dHA(τ)

dτ

〉

RR

= 2iµ2

∫ τ

τ0

dτ ′χF (x, x′)
d

dτ
CA(τ, τ ′) , (2.6)
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where |〉 = |a, 0〉 represents the atom in the state |a〉 and the field in the de Sitter-invariant

vacuum state |0〉. They are expressed in terms of the statistical functions of the free part

of the atom’s variable, Rf
2

CA(τ, τ ′) =
1

2
〈a|{Rf

2 (τ), Rf
2 (τ ′)}|a〉 , (2.7)

χA(τ, τ ′) =
1

2
〈a| [Rf

2 (τ), Rf
2 (τ ′)] |a〉 , (2.8)

and those of the field’s, φf ,

CF (x(τ), x(τ ′)) =
1

2
〈0|{φf (x(τ)), φf (x(τ ′))}|0〉 , (2.9)

χF (x(τ), x(τ ′) =
1

2
〈0|[φf (x(τ)), φf (x(τ ′))]|0〉 . (2.10)

CF (CA) is called the symmetric correlation function of the field (atom), χF (χA) its linear

susceptibility. The explicit forms of the statistical functions of the atom are given by

CA(τ, τ ′) =
1

2

∑

b

|〈a|Rf
2 (0)|b〉|2

(

eiωab(τ−τ ′) + e−iωab(τ−τ ′)

)

, (2.11)

χA(τ, τ ′) =
1

2

∑

b

|〈a|Rf
2 (0)|b〉|2

(

eiωab(τ−τ ′) − e−iωab(τ−τ ′)

)

, (2.12)

where ωab = ωa − ωb and the sum extends over a complete set of atomic states.

3. Spontaneous excitation of a freely falling atom in de Sitter spacetime

In this Section we will consider a freely moving atom interacting with a conformally coupled

massless scalar field in de Sitter spacetime. As is well known, different coordinates systems

can be used to parameterize de Sitter spacetime [15]. The rate of change of the atomic

energy is a scalar and should be independent of the coordinates. Here we choose to work

in the global coordinate system, in which the line element is expressed as

ds2 = dt2 − α2 cosh2(t/α)[dχ2 + sin2 χ(dθ2 + sin2 θdϕ2)] . (3.1)

Here α = 31/2Λ−1/2, where Λ is the cosmological constant, and the scalar curvature R =

12α−2. The canonical quantization of a massive scalar field with this metric has been dealt

with in Refs. [15, 18, 20 – 22]. In coordinates (3.1), the wave equation (2.4) for a massive

scalar field becomes
[

1

cosh3 t/α

∂

∂t

(

cosh3 t

α

∂

∂t

)

− ∆

α2 cosh2 t/α
+ m2 + ξR

]

φ = 0 , (3.2)

where the Laplacian

∆ =
1

sin2 χ

[

∂

∂χ

(

sin2 χ
∂

∂χ

)

+
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂ϕ2

]

. (3.3)
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From (3.2) one can get the eigenmodes, and define a de Sitter-invariant vacuum. Then the

Wightman function can be written as [22]

G+(x(τ), x(τ ′))) = − 1

16πα2

1
4 − ν2

cos πν
F

(

3

2
+ ν,

3

2
− ν; 2;

1 − Z(x, x′)

2

)

, (3.4)

where F is a hypergeometric function, and

Z(x, x′) = sinh
t

α
sinh

t′

α
− cosh

t

α
cosh

t′

α
cos Ω

cos Ω = cos χ cos χ′ + sin χ sinχ′[cos θ cos θ′ + sin θ sin θ′ cos(ϕ − ϕ′)]′ ,

ν =

[

9

4
− 12

R
(m2 + ξR)

]1/2

. (3.5)

In the massless, conformally coupled limit, for a freely falling atom, the Wightman function

becomes

G+(x(τ), x(τ ′))) = − 1

16π2α2 sinh2( τ−τ ′

2α − iε)
. (3.6)

Then the statistical functions of the field, (2.9) and (2.10), can be obtained

CF (x(τ), x(τ ′)) = − 1

32π2α2

[

1

sinh2( τ−τ ′

2α − iε)
+

1

sinh2( τ−τ ′

2α + iε)

]

, (3.7)

χF (x(τ), x(τ ′)) =
i

4π cos( i(τ−τ ′)
2α )

δ′(τ − τ ′) . (3.8)

With a substitution u = τ−τ ′, the contributions of vacuum fluctuations (2.5) and radiation

reaction (2.6) to the rate of change of the atomic energy read

〈

dHA(τ)

dτ

〉

V F

= − µ2

32π2α2

∑

b

ωab|〈a|Rf
2 (0)|b〉|2

∫ +∞

−∞
du

[

1

sin2( iu
2α + ε)

+
1

sin2( iu
2α − ε)

]

eiωabu

(3.9)

and
〈

dHA(τ)

dτ

〉

RR

= − iµ2

4π

∑

b

ωab|〈a|Rf
2 (0)|b〉|2

∫ +∞

−∞
du

eiωabu

cos( iu
2α )

δ′(u) , (3.10)

where we have extended the range of integration to infinity for sufficiently long times τ−τ0.

With the help of residue theorem, we can evaluate the integrals to get
〈

dHA(τ)

dτ

〉

V F

= −µ2

4π

[

∑

ωa>ωb

ω2
ab|〈a|Rf

2 (0)|b〉|2
(

1 +
2

e2παωab − 1

)

−
∑

ωa<ωb

ω2
ab|〈a|Rf

2 (0)|b〉|2
(

1 +
2

e2πα|ωab| − 1

)]

(3.11)

for the contributions of vacuum fluctuations to the rate of change of atomic energy, and
〈

dHA(τ)

dτ

〉

RR

= −µ2

4π

(

∑

ωa>ωb

ω2
ab|〈a|Rf

2 (0)|b〉|2 +
∑

ωa<ωb

ω2
ab|〈a|Rf

2 (0)|b〉|2
)

(3.12)
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for that of radiation reaction. Comparison with the case of an inertial atom in the

Minkowski vacuum [7] shows that the contribution of radiation reaction to the rate of

change of the atomic energy is the same as that in the flat spacetime, and thus is indepen-

dent of the spacetime curvature. But the contribution of vacuum fluctuations is modified

by the appearance of a thermal like term. Adding up the contributions of the vacuum

fluctuations (3.11) and radiation reaction (3.12) we arrive at the total rate of change of the

atomic energy:

〈

dHA(τ)

dτ

〉

tot

= −µ2

2π

[

∑

ωa>ωb

ω2
ab|〈a|Rf

2 (0)|b〉|2
(

1 +
1

e2παωab − 1

)

−
∑

ωa<ωb

ω2
ab|〈a|Rf

2 (0)|b〉|2 1

e2πα|ωab| − 1

]

. (3.13)

For an atom in its ground state in the de Sitter-invariant vacuum, there is a positive

contribution. So the atom spontaneously excites, just as if it were in a bath of blackbody

radiation at the temperature T = 1/2πα, which is exactly the temperature found by

Gibbons and Hawking [25] by examining the response of a freely moving particle-detector

in de Sitter spacetime. We therefore recover, in a different physical context, the results

of Gibbons and Hawking that reveals the thermal nature of de Sitter spacetime [25]. It

should be pointed out that since the cosmological constant is a very small number, so the

temperature T is insignificant in terms of the experimental observation.

4. Spontaneous excitation of a static atom in de Sitter spacetime

Now, we will calculate the spontaneous excitation rate of a static atom in de Sitter space-

time interacting with a conformally coupled massless scalar field in the de Sitter-invariant

vacuum. For this purpose, it is convenient to work in the static coordinate system in which

the line element is written as

ds2 =

(

1 − r2

α2

)

dt̃2 −
(

1 − r2

α2

)−1

dr2 − r2(dθ2 + sin2 θdϕ2) . (4.1)

This metric possesses a coordinate singularity of the type of an event horizon at r = α. The

coordinates (t̃, r, θ, ϕ) only cover part of de Sitter spacetime, just like the Rindler wedge.

For an atom at rest in the static coordinates system, its inherent acceleration is

a =
r

α2

(

1 − r2

α2

)−1/2

. (4.2)

The static coordinates are related to the global coordinates by

r = α cosh(t/α) sin χ , tanh(t̃/α) = tanh(t/α) sec χ . (4.3)

It should be noted that the worldlines of observers in the global and static coordinates

coincide at r = 0 and χ = 0 and an atom at rest in the static coordinates with r 6= 0 will

be accelerated with respect to an atom at rest in the global coordinates with χ = 0. In
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the static de Sitter metric (4.1), one can obtain a complete set of mode solutions of (2.4)

[23, 24], and chooses a de Sitter-invariant vacuum. Then the Wightman function for a

massless conformally coupled scalar field is given by [27, 28]

G+(x(τ), x(τ ′))) = − 1

8π2α2

cosh( r∗

α ) cosh( r∗′

α )

cosh( t̃−t̃′

α − iε) − cosh( r∗−r∗′

α )
, (4.4)

where

r∗ =
α

2
ln

α + r

α − r
. (4.5)

For a static atom, Eq. (4.4) becomes

G+(x(τ), x(τ ′))) = − 1

16π2κ2 sinh2( τ−τ ′

2κ − iε)
, (4.6)

where κ = α
√

g00, and we have used the definition

∆τ =
√

g00∆t̃ . (4.7)

One can then show that

CF (x(τ), x(τ ′)) = − 1

32π2κ2

[

1

sinh2( τ−τ ′

2κ − iε)
+

1

sinh2( τ−τ ′

2κ + iε)

]

, (4.8)

χF (x(τ), x(τ ′)) =
i

4π cos( i(τ−τ ′)
2κ )

δ′(τ − τ ′) . (4.9)

With the statistical functions given, we can compute the contributions of the vacuum

fluctuations and radiation reaction to the rate of change of the atomic energy to get

〈

dHA(τ)

dτ

〉

V F

= = −µ2

4π

[

∑

ωa>ωb

ω2
ab|〈a|Rf

2 (0)|b〉|2
(

1 +
2

e2πκωab − 1

)

−
∑

ωa<ωb

ω2
ab|〈a|Rf

2 (0)|b〉|2
(

1 +
2

e2πκ|ωab| − 1

)]

. (4.10)

and
〈

dHA(τ)

dτ

〉

RR

= −µ2

4π

(

∑

ωa>ωb

ω2
ab|〈a|Rf

2 (0)|b〉|2 +
∑

ωa<ωb

ω2
ab|〈a|Rf

2 (0)|b〉|2
)

. (4.11)

Adding up the contributions of the vacuum fluctuations (4.10) and radiation reaction (4.11)

we obtain the total rate of change of the atomic energy:

〈

dHA(τ)

dτ

〉

tot

= −µ2

2π

[

∑

ωa>ωb

ω2
ab|〈a|Rf

2 (0)|b〉|2
(

1 +
1

e2πκωab − 1

)

−
∑

ωa<ωb

ω2
ab|〈a|Rf

2 (0)|b〉|2 1

e2πκ|ωab| − 1

]

. (4.12)
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The above calculations show that the contribution of radiation reaction to the spontaneous

excitation rate is independent of the spacetime curvature and the acceleration. From

Eq. (4.12) we can see that for a static atom with an inherent acceleration in its ground

state in the de Sitter-invariant vacuum, there is a positive contribution to the spontaneous

excitation rate. Thus transitions from ground state to the excited states become possible,

and they occur just as if the atoms were immersed in a thermal bath at the temperature

T =
1

2πκ
=

1

2π
√

g00α
. (4.13)

It is interesting to note that the above temperature can be written in the form

T 2 =

(

1

2πα

)2

+

(

a

2π

)2

= T 2
GH + T 2

U . (4.14)

The first spacetime curvature dependent term in the above equation is the squared Gibbons-

Hawking temperature of de Sitter spacetime, which is the temperature of thermal radiation

as perceived by a freely falling atom, and the second acceleration dependent term is the

squared Unruh temperature which arises as a result of the Unruh effect. Thus, the thermal

radiation as felt by a static atom in de Sitter spacetime is a combination of two different

effects. One arises from the thermal nature of de Sitter spacetime itself and is characterized

by the Gibbons-Hawking temperature and the other from the acceleration induced thermal

effect characterized by the Unruh temperature. This is quite similar to what happens for

a static atom outside a black hole, where one finds that both the Hawking effect and the

Unruh effect contribute to the bath of thermal radiation encountered by the atom [12, 13],

although the detailed relationship is different. Relation Eq. (4.14) agrees with the result

obtained in other different physical contexts [29, 30]. Let us note that T diverges as r

approaches α as a consequence of the blowup of TU . The reason is that to hold the atom

static at the event horizon, an infinite inherent acceleration is needed.

5. Summary

We have studied, using the DDC formalism, the spontaneous excitation of a two-level

atom interacting with a conformally coupled massless scalar field in the de Sitter-invariant

vacuum in de Sitter spacetime, and separately calculated the contributions of vacuum

fluctuations and radiation reaction to the rate of change of the atomic energy. Both the

case of a freely falling atom and that of a static atom have been considered.

Remarkably, for a freely falling atom, we find a nonzero excitation rate, which is

exactly what one would obtain if there is a bath of thermal radiation at the Gibbons-

Hawking temperature. We therefore recover, in a different physical context, the results of

Gibbons and Hawking that reveals the thermal nature of de Sitter spacetime [25].

For a static atom, our results show that the atom also perceives a thermal bath of

radiation which is now a combined result of the Gibbons-Hawking effect of de Sitter space-

time and the Unruh effect associated with the inherent acceleration the atom must have in

order to be static. An interesting feature in contrast to the case of a static atom outside
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a black hole [12, 13] is that the temperature of thermal bath as perceived by the static

atom in de Sitter spacetime is the square root of the sum of the squared Gibbons-Hawking

temperature and the squared Unruh temperature associated with the inherent acceleration

of the atom.

Finally, It should be pointed out that we have only considered the de Sitter invariant

Bunch-Davies states, and it, therefore, remains interesting to see whether the thermal

response will still be present when the vacuum states are replaced by a wider class of states

as those considered in Refs. [31, 32].
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